Brownian particles in transient polymer networks.

نویسندگان

  • Joris Sprakel
  • Jasper van der Gucht
  • Martien A Cohen Stuart
  • Nicolaas A M Besseling
چکیده

We discuss the thermal motion of colloidal particles in transient polymer networks. For particles that are physically bound to the surrounding chains, light-scattering experiments reveal that the submillisecond dynamics changes from diffusive to Rouse-like upon crossing the network formation threshold. Particles that are not bound do not show such a transition. At longer time scales the mean-square displacement (MSD) exhibits a caging plateau and, ultimately, a slow diffusive motion. The slow diffusion at longer time scales can be related to the macroscopic viscosity of the polymer solutions. Expressions that relate the caging plateau to the macroscopic network elasticity are found to fail for the cases presented here. The typical Rouse scaling of the MSD with the square root of time, as found in experiments at short time scales, is explained by developing a bead-spring model of a large colloidal particle connected to several polymer chains. The resulting analytical expressions for the MSD of the colloidal particle are shown to be consistent with experimental findings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rouse dynamics of colloids bound to polymer networks.

We present experimental evidence of a transition in the short-time Brownian motion of colloids from diffusive to subdiffusive, Rouse-like. This transition is seen for particles that are bound, through physical adsorption, to transient polymer networks. The characteristic Rouse scaling of the mean square particle displacement with radical t, found in the experiments, is rationalized using an ana...

متن کامل

Conformational Properties of Active Semiflexible Polymers

The conformational properties of flexible and semiflexible polymers exposed to active noise are studied theoretically. The noise may originate from the interaction of the polymer with surrounding active (Brownian) particles or from the inherent motion of the polymer itself, which may be composed of active Brownian particles. In the latter case, the respective monomers are independently propelle...

متن کامل

Preparation of MCM-41 nanofluid and an investigation of Brownian movement of the nanoparticles on the nanofluid conductivity

In this investigation the silicate nano structure of MCM-41 has been used for the production of nanofluid. The particles have negligible heat conductivity and therefore by their dispersion in a base fluid like water, it is possible to study the increase of heat conductivity due to the Brownian motion effects. In this work a suitable apparatus for the measurement of heat conductivity has been bu...

متن کامل

Chapter 1 Applications of Density Functional Theory in Soft Condensed Matter

Applications of classical density functional theory (DFT) to soft matter systems like colloids, liquid crystals and polymer solutions are discussed with a focus on the freezing transition and on nonequilibrium Brownian dynamics. First, after a brief reminder of equilibrium density functional theory, DFT is applied to the freezing transition of liquids into crystalline lattices. In particular, s...

متن کامل

Simple tools for complex phenomena: viscoelastic phase separation captured by disconnectable springs.

Viscoelastic phase separation is characterized by the formation of a transient gel upon phase separation. A transient gel state is widely observed in complex fluids including polymer solutions, colloidal suspensions, and protein solutions, but its physical description is quite difficult due to its intrinsically nonequilibrium nature. We have modeled this transient gel state using a type of Brow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 77 6 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2008